Основные темы НИР, финансируемые из государственного бюджета в 2024-2026 гг.
- 25078 просмотров
- 13.03.2018
- Распечатать
1. Kokoulin M.S., Sigida E.N., Kuzmich A.S., Ibrahim I.M., Fedonenko Y.P., Konnova S.A. Structure and antiproliferative activity of the polysaccharide from Halomonas aquamarina related to Cobetiapacifica // Carbohyd. Polym. 2022. V. 298: 120125.
DOI: 10.1016/j.carbpol.2022.120125
2. Guliy O.I., Evstigneeva S.S., Bunin V.D. Electrical sensor system for in vitro bacteria biofilm diagnostics // Biosensors Bioelectronics: X. 2022. V. 11: 100174.
DOI: 10.1016/j.biosx.2022.100174
3. Guliy O.I., Zaitsev B.D., Semyonov A.P., Karavaeva O.A., Fomin A.S., Burov A.M., Staroverov S.A., Borodina I.A. Sensor system based on a piezoelectric resonator with a lateral electric field for virus diagnostics // Ultrasound Med. Biol. 2022. V. 48 (5). P. 901–911.
DOI: 10.1016/j.ultrasmedbio.2022.01.013
4. Sigida E.N., Ibrahim I.M., Kokoulin M.S., Abulreesh H.H., Elbanna K., Konnova S.A., Fedonenko Y.P. Structure of the 4-O-[(R)-1-carboxyethyl]-D-mannose-containing O-specific polysaccharide of a halophilic bacterium Salinivibrio sp. EG9S8QL isolated from Lake Qarun // Mar. Drugs. 2021. V. 19. 508.
DOI: 10.3390/md19090508
5. Kamnev A.A., Tugarova A.V. Bioanalytical applications of Mössbauer spectroscopy // Rus. Chem. Rev. 2021. V. 90 (11). P. 1415-1453.
DOI: 10.1070/RCR5006
6. Grinev V.S., Tregubova K.V., Anis’kov A.A., Sigida E.N., Shirokov A.A., Fedonenko Y.P., Yegorenkova I.V. Isolation, structure and potential biotechnological applications of the exopolysaccharide from Paenibacillus polymyxa 92 // Carbohyd. Polym. 2020. V. 232: 115780.
DOI: 10.1016/j.carbpol.2019.115780
7. Velichko N.S., Kokoulin M.S., Sigida E.N., Chesnokova P.D., Komissarov A.S., Kovtunov E.A., Fedonenko Y.P. Structural and genetic characterization of the Herbaspirillum frisingense GSF30 colitose-containing O-antigen // Int. J. Biol. Macromol. 2020. V. 161. P. 891-897.
DOI: 10.1016/j.ijbiomac.2020.06.093
8. Ojeda J.J., Merroun M.L., Tugarova A.V., Lampis S., Kamnev A.A., Gardiner P. H. E. Developments in the study and applications of microbial transformations of selenium species // Crit. Rev. Biotechnol. 2020. V. 40(8). P. 1250-1264.
DOI: 10.1080/07388551.2020.1811199
9. Shelud'ko A.V., Filip'echeva Y.A., Telesheva E.M., Yevstigneeva S.S., Petrova L.P., Katsy E.I. Polar flagellum of the alphaproteobacterium Azospirillum brasilense Sp245 plays a role in biofilm biomass accumulation and in biofilm maintenance under stationary and dynamic conditions // World J. Microbiol. Biotechnol. 2019. V. 35: 19.
DOI: 10.1007/s11274-019-2594-0
10. Shelud'ko A.V., Filip'echeva Y.A., Telesheva E.M., Yevstigneyeva S.S., Petrova L.P, Katsy E.I. Restoration of polar-flagellum motility and biofilm-forming capacity in the mmsB1 mutant of the alphaproteobacterium Azospirillum brasilense Sp245 points to a new role for a homologue of 3-hydroxyisobutyrate dehydrogenase // Can. J. Microbiol. 2019. V. 65(2). P. 144-154.
DOI: 10.1139/cjm-2018-0481
1. Dykman L.A., Staroverov S.A., Kozlov S.V., Fomin A.S., Chumakov D.S., Gabalov K.P., Kozlov Y.S., Soldatov D.A., Khlebtsov N.G. Immunization of mice with gold nanoparticles conjugated to thermostable cancer antigens prevents the development of xenografted tumors // Int. J. Mol. Sci. 2022. V. 23, No. 22. 14313.
DOI:10.3390/ijms232214313
2. Krasova Yu.V., Tkachenko O.V., Sigida E.N., Lobachev Yu.V., Burygin G.L. Lipopolysaccharide and flagellin of Azospirillum brasilense Sp7 influence callus morphogenesis and plant regeneration in wheat // World J. Microbiol. Biotechnol. 2022. Vol. 38, Art. 62
DOI: 10.1007/s11274-022-03247-y
3. Alen’kina S.A., Kupryashina M.A. Influence of Azospirillum lectins on the antioxidant system response in wheat seedling roots during abiotic stress // Soil Research. 2022. Vol. 60. P. 197-209.
DOI: 10.1071/SR21092
4. Tkachenko O.V., Evseeva N.V., Terentyeva E.V., Burygin G.L., Shirokov A.А., Burov A.М., Matora L.Yu., Shchyogolev S.Yu. Improved production of high-quality potato seeds in aero-ponics with plant-growth-promoting rhizobacteria // Potato Res. 2021. Vol. 64, No. 1. P. 55-66.
DOI: 10.1007/s11540-020-09464-y
5. Sokolov А.О., Dykman L.А., Galitskaya А.А., Sokolov О.I. Identification and characterization of Rothia amarae sp. nov. in a suspension culture of Arabidopsis thaliana (Heynh.) cells // Biol. Life Sci. Forum. 2021. V. 4, No. 1. 92.
DOI: 10.3390/IECPS2020-08753
6. Tsivileva O.M., Pozdnyakov A.S., Ivanova A.A. Polymer nanocomposites of selenium biofabricated using fungi // Molecules. 2021. Vol. 26. Art. 3657.
DOI: 10.3390/molecules26123657
7. Dykman L.A. Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases // Expert Rev. Vaccines. 2020. V. 19, No. 5. P. 465-477.
DOI: 10.1080/14760584.2020.1758070
8. Shirokov A., Budanova A., Burygin G., Evseeva N., Matora L., Shchyogolev S. Flagellin of polar flagellum from Azospirillum brasilense Sp245: Isolation, structure, and biological activity // Int. J. Biol. Macromol. 2020. Vol. 147. P. 1221-1227.
DOI: 10.1016/j.ijbiomac.2019.10.092
9. Vetchinkina E.P., Loshchinina E.A., Kupryashina M.A., Burov A.M., Nikitina V.E. Shape and size diversity of gold, silver, selenium, and silica nanoparticles prepared by green synthesis using fungi and bacteria // Ind. Eng. Chem. Res. 2019. Vol. 58. P. 17207-17218.
DOI: 10.1021/acs.iecr.9b03345
10. Dykman L.A., Shchyogolev S.Y. The Effect of Gold and Silver Nanoparticles on Plant Growth and Development // In: “Metal Nanoparticles: Properties, Synthesis and Applications” / Eds. Saylor Y., Irby V. New York: Nova Science Publishers, 2018. Ch. 6. P. 263-300.
ISBN:9781536141153
1. Muratova A., Turkovskaya O. Association of plants and microorganisms for degradation of polycyclic aromatic hydrocarbons. Chapter18 / In: Editor(s): Kuldeep Bauddh, Ying Ma, Ad-vances in Microbe-assisted Phytoremediation of Polluted Sites // Elsevier Inc., 2022. – P. 435-476.
DOI:10.1016/B978-0-12-823443-3.00011-9
2. Муратова А.Ю., Панченко Л.В., Дубровская Е.В., Любунь Е.В., Голубев С.Н., Сунгурцева И.Ю., Захаревич А.М., Бикташева Л.Р., Галицкая П.Ю., Турковская О.В. Биореме-диационный потенциал иммобилизованных на биочаре бактерий Azospirillum brasilense // Микробиология. – 2022. – Т. 91, № 5. – С. 554–564. (Muratova A.Yu., Panchenko L.V., Dubrovskaya E.V., Lyubun’ E.V., Golubev S.N., Sungurtseva I.Yu., Zakharevich A.M., Biktasheva L.R., Galitskaya P.Yu., Turkovskaya O.V. Bio-remediation potential of biochar-immobilized cells of Azospirillum brasilense // Microbiology. – 2022. – Vol. 91, No. 5. – P. 514–522. DOI:10.1134/S0026261722601336)
3. Pozdnyakova N., Dubrovskaya E., Schlosser D., Kuznetsova S., Sigida E., Grinev V., Golubev S., Kryuchkova E., Varese G.C., Turkovskaya O. Widespread ability of ligninolytic fungi to degrade hazardous organic pollutants as the basis for the self-purification ability of natural ecosystems and for mycoremediation technologies // Appl. Science. – 2022. – Vol. 12. – P. 2164 DOI:10.3390/app12042164
4. Dubrovskaya E., Golubev S., Muratova A., Pozdnyakova N., Bondarenkova A., Sungurtseva I., Panchenko L., Turkovskaya O. Effect of remediation techniques on petroleum removal from and on biological activity of a drought stressed Kastanozem soil // Environmental Science and Pollution Research. – 2022
DOI:10.1007/s11356-022-21742-5
5. Muratova A., Lyubun Y., Sungurtseva I., Turkovskaya O., Nurzhanova A. Physiological and biochemical characteristic of Miscanthus × giganteus grown in heavy metal – oil sludge co-contaminated soil // Journal of Environmental Sciences. – 2022. Vol. 115, P. 114-125 DOI: 10.1016/j.jes.2021.07.013
6. Позднякова Н.Н., Буров А.М., Антонов Е.А., Александрова А.В., Турковская О.В. Исследование способности аскомицетов трансформировать полиэтилентерефталат // Биотехнология. – 2022. – Т. 38 (5). – С. 106-115
DOI: 10.56304/S023427582205012X
7. Golubev S.N., Muratova A.Yu., Panchenko L.V., Shchyogolev S.Yu., Turkovskaya O.V. Mycolicibacterium sp. strain PAM1, an alfalfa rhizosphere dweller, catabolizes PAHs and promotes partner-plant growth // Microbiological Research. – 2021. Vol. 253. – 126885 DOI: 10.1016/j.micres.2021.126885
8. Lyubun Y., Muratova A., Dubrovskaya E., Sungurtseva I., Turkovskaya O. Combined effects of cadmium and oil sludge on sorghum: growth, physiology, and contaminant removal // Environmental Science and Pollution Research. – 2020. – V. 27(18). – P. 22720-22734 DOI: 10.1007/s11356-020-08789-y
9. Burygin, G.L., Kargapolova, K.Y., Kryuchkova, Y.V., Avdeeva E.S., Gogoleva N.E., Ponomaryova T.S., Tkachenko O.V. Ochrobactrum cytisi IPA7.2 promotes growth of potato microplants and is resistant to abiotic stress. World J Microbiol Biotechnol 35, 55 (2019)
DOI: 10.1007/s11274-019-2633-x
10. Турковская О.В., Голубев С.Н. Коллекция ризосферных микроорганизмов ИБФРМ РАН: значение для исследования растительно-бактериальной ассоциативности // Вавиловский журнал генетики и селекции. – 2020. – Т. 24, № 3. – С. 315-324.
DOI: 10.18699/VJ20.623
11. Gusev Y., Mazilov S., Volokhina I., Chumakov M. Agrobacterial ssDNA-binding protein VirE2 and its complexes // Journal of Computational Biology 2020. V.27. No5. P. 675-682. DOI: 10.1089/cmb.2019.0243
12. Volokhina I., Gusev Y., Moiseeva Y., Fadeev V., Kolesova A., Gutorova O., Chumakov M. Expression of genes coding for chromatin-modifying enzymes maize embryo sacs before and after pollination // Plant Gene. 2020.
DOI: 10.1016/j.plgene.2020.100221
13. Volokhina I., Gusev Y., Moiseeva Ye., Gutorova O., Fadeev V., Chumakov M. Gene expression in parthenogenic maize proembryos // Plants. – 2021. – Vol. 10(5). – P. 964 DOI:10.3390/plants10050964
14. Гусев Ю.С., Гуторова О.В., Моисеева Е.М., Фадеев В.В., Зайцев С.А., Волков Д.П., Жук Е.А., Волохина И.В., Чумаков М.И. Оценка рисков переопыления кукурузы при совместном выращивании нескольких линий в условиях Юго-Востока Европейской части России // Сельскохозяйственная биология, 2021, том 56, №5.
15. Чумаков М.И., Мазилов С.И. Генетический контроль гиногенеза у кукурузы (обзор) // Генетика. 2022. – Т. 58. – № 4. – C. 388–397. DOI: 10.31857/S001667582204004X
16. Моисеева Е. М., Гусев Ю. С., Гуторова О. В., Чумаков М. И. Сравнительный анализ экспрессии генов HAP2/GCS1, GEX2 у линий кукурузы саратовской селекции // Генетика, 2023. Т. 59. № 3. с. 327–335.
DOI: 10.31857/S0016675823030098
1. Khlebtsov, B.N., Bratashov, D.N., Khlebtsov, N.G. Tip-functionalized Au@Ag nanorods as ultrabright surface-enhanced Raman scattering probes for bioimaging in off-resonance mode // J. Phys. Chem. C. – 2018. - Vol. 122. - P. 17983-17993.
DOI: 10.1021/acs.jpcc.8b04772
2. Khlebtsov B.N., Bratashov D.N., Byzova N.A., Dzantiev B.B., Khlebtsov N.G. SERS-based lateral flow immunoassay of troponin I using gap-enhanced Raman tags // Nano Res. - 2019. - Vol. 12 (2). - P. 413–420
DOI: 10.1007/s12274-018-2232-4
3. Khlebtsov B.N., Tumskiy R.S., Burov A.M., Pylaev T.E., Khlebtsov N.G. Quantifying the Numbers of Gold Nanoparticles in the Test Zone of Lateral Flow Immunoassay Strips // ACS Appl. Nano Mater. - 2019. - Vol. 28. - P. 5020-5028.
DOI: 10.1021/acsanm.9b00956
4. Khlebtsov N.G., Lin L., Khlebtsov B.N., Ye J. Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications // Theranostics. - 2020. - Vol. 10. - P. 2067-2094.
DOI: 10.7150/thno.39968
5. Khlebtsov B. N., Khanadeev V. A., Burov A. M., Le Ru E. C., Khlebtsov N. G. Reexamination of surface-enhanced Raman scattering from gold nanorods as a function of aspect ratio and shape // J. Phys. Chem. C. - 2020. - Vol. 124 - P. 10647–10658.
DOI: 10.1021/acs.jpcc.0c00991
6. Khlebtsov B. N., Burov A. M., Bratashov D. N., Tumskiy R. S., Khlebtsov N. G. Petal-like gap-enhanced Raman tags with controllable structures for high-speed Raman imaging // Langmuir. – 2020. – Vol. 36. – P. 5546-5553.
DOI: 10.1021/acs.langmuir.0c00623
7. Khlebtsov N. G., Zarkov S. V., Khanadeev V.A., Avetisyan Y. A. Novel concept of two-component dielectric function for gold nanostars: theoretical modelling and experimental verification // Nanoscale. - 2020. - Vol. 12. - P. 19963–19981.
DOI: 10.1039/d0nr02531c
8. Pylaev T. E., Efremov Yu. M., Avdeeva E. S., Antoshin A. A., Shpichka A. I., Khlebnikova T. M., Timashev P. S., Khlebtsov N. G. Optoporation and recovery of living cells under Au nanoparticle layers-mediated NIR-laser irradiation // ACS Appl. Nano Mater. – 2021 – Vol. 4/ – P. 13206–13217.
DOI: 10.1021/acsanm.1c02734
9. Khlebtsov N.G., Dykman L.A., Khlebtsov B.N. Synthesis and plasmonic tuning of gold and gold–silver nanoparticles // Russ. Chem. Rev. 2022. – Vol. 91, no. 10. – art. RCR5058.
DOI:10.57634/rcr5058
10. Khlebtsov N.G., Khlebtsov B.N., Kryuchkova E.V., Zarkov S.V., Burov A.M. Universal determination of gold concentration in colloids with UV-vis spectroscopy // J. Phys. Chem. C. – 2022. – Vol. 126, no. 45. – P. 19268-19276.
DOI: 10.1021/acs.jpcc.2c05843
11. Khlebtsov B., Burov A., Pylaev T., Savkina A., Prikhozhdenko E., Bratashov D., Khlebtsov N. Improving SERS bioimaging of subcutaneous phantom in vivo with optical clearing // J. Biophotonics. – 2022. – Vol. 15 (3). – e202100281.
DOI: 10.1002/jbio.202100281
Выполняются научные проекты, поддержанные грантами Российского научного фонда.